Orbit 16 TC は 専用の低ノイズ16 chアンプを搭載し、広帯域幅での16chの脂質二分子膜の完全同時測定を行うことができます。

Orbit 16 TC




Orbit 16 TC - Taking the Pain out of Painting


ナニオンの Orbit 16 TC(オービット16) のプラットフォームは、一度に16 chの脂質二分子膜を迅速に自動形成し、完全同時測定を行うことで、脂質二分子膜実験における painting法の苦痛から研究者を解放します。 Orbit 16 TC は以下の優位性を有しています:

  • 16 ch の脂質二分子膜をボタン一つで自動形成/同時測定が可能
  • 低ノイズ、高帯域幅での完全同時測定
  • 自動温度制御(5~50℃)
  • 専用の測定ソフトウェア同梱
  • 標的チャネルタンパク質を直接再構成または、プロテオリポソームで膜融合
  • イオンチャネル:電位依存性、リガンド依存性、温度依存性
  • ナノポア、抗菌ペプチド、トキシンなど...
  • ティスポ式 MECA 16 TC チップによる低コスト実験

Orbit 16 TC は 専用の低ノイズ16 chアンプ (Elements社 S.R.L.) を搭載し、広帯域幅での16chの脂質二分子膜の完全同時測定を行うことができます。

 

Orbit 16 TC バイレイヤー用プラットフォーム構成

Orbit 16 TC コンプリートシステムは、レコーディングステーション、内蔵型のElements社製 e16n バイレイヤーアンプ、温度制御システム、専用のワークステーション(PC)で構成されています。




詳細情報:

ソフトウェア

 

Orbit 16 TC EDR4 Software

Orbit16TC_Software.jpg

The intuative and easy to learn EDR4 software for the Orbit 16 TC was developed by our partner Elements S.R.L.(Italy). Further detailed information can be found at https://elements-ic.com/


消耗品

 
MECA 16 TC chips

The MECA 16 TC recording substrate contains an array of 16 circular microcavities in a highly inert polymer. Each cavity contains an individual integrated Ag/AgCl-microelectrode. The bilayer is automatically formed by remotely actuated painting (Ionera1-SPREAD), thus roofing the liquid-filled cavity. The bilayers can be easily and repeatedly zapped and re-formed in an automated fashion. After bilayer formation, ion channels or nanopores are reconstituted via self-insertion, proteoliposome fusion or dilution from detergent micelles.

The MECA 16 TC recording chips are produced and quality assured by our partner Ionera Technologies GmbH in Freiburg Germany and shipped from Munich to our international customers. Different types of MECA 16 chips will be available depending on the sample.

Orbit16TC_Chip.jpg


Available chip types
  • "MECA 16 TC Recording Chips 100 µm": 16-well recording chip with 100 µm cavity size (Order # 131013)

インタビュー & ケーススタディ

 

Prof. Dr. Friedrich Simmel - Statement about the Orbit 16

Icon_Orbit.png   “The Orbit 16 enables us to generate high quality, single channel recordings with synthetic DNA membrane channels, which in our experience are notoriously difficult to measure. DNA pores are quite hard to functionally incorporate into lipid bilayers, but could be successfully investigated using the Orbit 16, as published in Science. The Orbit 16 offers a drastic increase in throughput since it substantially speeds up formation of bilayers and data generation by its parallel recording channels, thus providing us an easy-to-use platform for efficient and accurate research on DNA nanodevice-membrane interactions.”

Dr. Friedrich Simmel, Professor, Systems Biophysics and Bionanotechnology, Physics Department and ZNN/WSI
Technical University of Munich, Munich, Germany

 

Prof. Dr. Stefan Howorka - Statement about the Orbit 16

Icon_Orbit.png   “Within our research on the CsgG channel, Nanion’s Orbit 16 - combined with Ionera's MECA Chip technology - has substantially boosted our scientific output. The outstanding research tool is easy to handle and speeds up the parallel generation of 16 bilayers. By increasing the throughput of single-channel current recordings, it is a breakthrough in the biophysical analysis of pore forming proteins. Within approximately one week’s worth of lab time, we had the data needed for the recent paper in Nature. This would have been hard to achieve using conventional serial bilayer methods. In addition, the ease-of-use provided by the Orbit 16 shortens the learning curve for making high quality bilayer recordings.  As a benefit in academia, students can now get hands-on experience with bilayer recordings also for shorter projects.“

Dr. Stefan Howorka, Associate Professor of Organic Chemistry and Chemical Biology
University College London, London, UK


データ & アプリケーション

 

Alpha-Hemolysin - Parallel Recordings of monoPEG-28 Block

2011_Hemolysin.gifIcon_Orbit.png Orbit 16 data and applications: 
Data courtesy of Dr. Gerhard Baaken et. al., University of Freiburg / Ionera.

Event-averaged histograms (black) and overlaid current traces (blue) of parallel and simultaneous recordings on a MECA chip of monoPEG-28-mediated blockages of hemolysin nanopore(s). The current traces were recorded with a multichannel amplifier (Tecella Jet 16). Histograms were derived from the mean current levels of at least 2000 visits of blocked stated per cavity (20 kHz sample frequency).
Read the full paper. (Am. Chem. Soc Nano, 5(10), 8080-8088, 2011)

 

Alpha-Hemolysin - Block by Mono- and Poly PEGs

 2011_HL_Hist.gifIcon_Orbit.png Orbit 16 data and applications:
Data courtesy of Dr. Gerhard Baaken et.al, University of Freiburg / Ionera.

Current traces and histograms derived from recordings of αHL pores blocked by monoPEG-28 and polyPEG-1500 on an Ionera MECA chip (AxoPatch 200B, filter freq: 20kHz, digitized at 200 kHz).
Read the full paper: (Am. Chem. Soc Nano, 5(10), 8080-8088, 2011)

 

Alamethicin - Parallel recordings

Alamethicin_Ionera.gifIcon Orbit Orbit 16 data and applications: 
Data courtesy of Dr. Gerhard Baaken, University of Freiburg / Ionera.

The data image shows parallel recordings from reconstituted alamethicin channels. See also the paper: "Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR", Salnikov et al. (2016) Biophysical Journal 111(11): 2450-2459.

 

Alpha-Hemolysin - Automated Formation of Membranes from Polyoxazoline based Triblock Copolymers

Orbit16_Ionera_ahemolysin_2.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Automated formation of membranes from polyoxazoline based triblock  popolymers. Screenshot of a recording of Alpha-Hemolysine in a polyoxazoline based triblock copolymer membrane on the Orbit 16.

Alpha-Hemolysin is capable of insertion into triblock copolymer membranes.
(A) Current-voltage relationship of Alpha-Hemolysin pore in Poly(2-methyloxazoline-b-dimethylsiloxane-b-2-methyloxazoline) membrane. Average of two channels. Conditions: 25 mM Tris, 4 M KCl, pH 8.0.
(B+C) Representative recordings of Alpha-Hemolysin with PEG-28 at 40 mV and -40 mM. Conditions: 25 mM Tris, 4 M KCl, pH 8.0. Note different time scale at positive (B) and negative (C) potentials. 

 

KcsA - Single Channel Recordings

 Orbit16_Ionera_KcsA.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Single channel currents of tetrameric potassium channel KcsA E71A recorded from 5 selected bilayers in parallel.
KcsA was expressed in vitro with its co-translational integration into liposoms containing asolectin lipids. The proteoliposomes were subsecuently fused with bilayer array containing POPE/POPG on the Orbit 16.
Conditions: Current traces were recorded in 20 mM MES pH 4.0 on the cis-side and 10 mM MOPS, pH 7.0 on the trans-side of the bilayer; containing 200 mM KCl symmetric solutions with membrane potential held at +150 mV.

 

Ryanodine Receptor - Application of Na-ATP and Ryanodine

 Orbit_16_RyanodineR_1.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Traces illustrating RYR single channel activity in the planar lipid bilayer recorded on the Orbit 16.
The RYR channel was reconstituted via fusion of sarcoplasmic reticulum vesicles with preformed asolectin bilayer.

(A) Activity after vesicle fusion and buffer exchange on cis-side. (B) 120 s after addition of 1 mM Na-ATP to the cis-side. (C) 120 s after addition of 5 µM Ryanodine to the cis-side.
Conditions: Trans-side: 53 mM Ba(OH)2, 1 mM Ca2+; Cis-side: 150 nM Ca2+, VHold: 0 mV in all cases

 

MspA - Mycobacterial Porin

 Orbit16_Ionera_MspA.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Screenshot of the recording window showing simultaneous and parallel assay of channel-forming activity and single-channel conductance of recombinant MspA mutant porin in a diphytanoyl phosphatidylcholine bilayer derived in 1 experimental run with the Orbit 16.

Traces from a single experiment recorded in parallel from 16 lipid bilayers. Grids X: 1 s; Y: 100 pA. Addition of MspA in OPOE detergent micelles resulted in insertion of 97 pores in 12 bilayers.
Conditions: 20 mM HEPES, 350 mM KCl, pH 7,5, rMspA final concentration 20 ng/ml; holding potential +40 mV

 

Alpha-Hemolysin - PEG Detection

 Orbit16_Ionera_ahemolysin.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Screenshot of the recording window showing simultaneous and parallel PEG detection with single aHL-nanopores. Channels 1-5,7,12-14 contain a single aHL-nanopore. Channels 10 and 11 have two and Channel 9 has three aHL-nanopores. In Channels 8 and 14 single aHL-nanopores are assembled as hexamer. Channels 6 and 16 are switched off.
Conditons: 3 M KCl, 20 mM TRIS, pH 8, +40 mV

 

Gramicidin - Ion Channel Forming Antibiotic

 Orbit16_Ionera_Gramicidin.jpg Icon_Orbit.png Orbit 16 and applications:
Data were kindly provided by Ionera.

Screenshots of a recording window of a typical Gramicidin ion channel forming activity assay on the Orbit 16.
Conditions: symmetrical 0,1 HCl, +150 mV.


ウェビナー & 動画

 

 

Webinars

17.09.2020 | Webinar: Electrophysiological investigation of integral membrane proteins using the Orbit mini

Icon_Orbit_Mini.png  Orbit mini Webinar

Date: September 17. 2020, 4:00 PM CET (10:00 AM EDT)

200917_blog_image_orbit_mini_webinar.jpg

Speakers: 

Dr. Conrad Weichbrodt (Senior Scientist / Product Manager Orbit family; Nanion Technologies)
 

28.06.2018 | Webinar: Artificial Lipid Bilayers in focus: Hand-held DNA-sequencing and biosensing with nanopores

180628_event_image_webinar_Orbit.jpg Icon_Orbit_Mini.png   Orbit mini and   Icon_Orbit.png   Orbit 16

Learn about single channel measurements in bilayer recording using the orbit instrument family

- Simplifying artificial bilayer experiments: Single-molecule experiments on micro-cavity arrays
- Hand-held DNA-sequencing and biosensing with nanopores 

 

27.01.2016 | Webinar: Instant bilayers - just add protein

Icon_Orbit.png   Orbit 16 and   Icon_Orbit_Mini.png   Orbit Mini

Orbits V1 flat 250pxThis webinar covers the use of the lipid bilayer platforms from Nanion: the Orbit16 and the Orbit mini for characterization of membrane proteins like ion channels, bacterial porins and biological nanopores. Both bilayer systems support high quality low noise recordings, but differ in throughput capabilities and experimental features. The Orbit16, introduced in 2012 is a device for efficient formation of 16 lipid bilayers simultaneously, allowing for parallel bilayer-reconstitution of ion channels and nanopores.

 

Movies: Oral Presentations and Tutorials

2018 - Simplifying artificial bilayer experiments: Single-molecule experiments on micro-cavity arrays

Icon_Orbit.png   Orbit 16 and   Icon_Orbit_Mini.png   Orbit mini Oral Presentation

Presenter: 
Dr. Conrad Weichbrodt, Product Manager Orbit instrument family, Nanion Technologies GmbH, Germany
Source:
Webinar: "Artificial Lipid Bilayers in focus: Hand-held DNA-sequencing and biosensing with nanopores", June 28, 2018

 

2018 - Hand-held DNA-sequencing and biosensing with nanopores

Icon_Orbit.png   Orbit 16 Oral Presentation

Presenter: 
Prof. Dr. Stefan Howorka, University College London, Department of Chemistry
Source:
Webinar: "Artificial Lipid Bilayers in focus: Hand-held DNA-sequencing and biosensing with nanopores", June 28, 2018




ダウンロード:


製品カタログ

Orbit 16 TC - Product Sheet

Icon_Orbit.png   Orbit 16 TC product sheet:   (PDF 1.6 MB)

 

phocathumbnail_Nanion_Product_Flyer_Orbit_16TC.jpg

preview the file here for download


論文

 

2021 - Design, assembly, and characterization of membrane-spanning DNA nanopores

 Icon_Orbit.png  Orbit 16 and Icon_Orbit_Mini.png Orbit mini publication in Nature Protocols (2021)

Authors:
Lanphere C., Offenbartl-Stiegert D., Dorey A., Pugh G., Georgiou E., Xing Y., Burns J.R., Howorka S.

 

2020 - Electrophysiology on Channel-Forming Proteins in Artificial Lipid Bilayers

Icon_Orbit.png  Orbit 16 and Icon_Orbit_Mini.png Orbit mini Chapter in Patch Clamp Electrophysiology (2020)

Authors:
Zaitseva E., Obergrussberger A., Weichbrodt C., Boukhet M., Bernhard F., Hein C., Baaken G., Fertig N., Behrends J.C.

 

2020 - Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore

Icon_Orbit.png  Orbit 16 publication in Nature Biotechnology (2020)

Authors:
Ouldali H., Sarthak K., Ensslen T., Piguet F., Manivet P., Pelta J., Behrends J.C., Aksimentiev A., Oukhaled A.

 

2020 - Dynamic interaction of fluoroquinolones with magnesium ions monitored using bacterial outer membrane nanopores

Icon_Orbit.png Orbit 16 publication in Chemical Science (2020)

Authors:
Wang J., Prajapati J.D., Kleinekatöfer U., Winterhalter M.

 

2019 - Synthetic protein-conductive membrane nanopores built with DNA

Icon_Orbit.png   Orbit 16 and   Icon_Orbit_Mini.png   Orbit mini publication in Nature Communications (2019)

Authors:
Diederichs T, Pugh G., Dorey A., Xing, Y., Burns J.R., Nguyen Q.H., Tornow M., Tampé R., & Howorka S

 

2019 - Real-time monitoring β-lactam/β-lactamase inhibitor (BL/BLI) mixture towards the bacteria porin pathway at single molecule level

Icon_Orbit.png   Orbit 16 publication in Analytical and Bioanalytical Chemistry (2019)

Authors:
Wang J., Fertig N., Ying Y.L.

 

2019 - Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems

Icon_N1.png   SURFE2R N1 and   Icon_Orbit.png   Orbit 16 publication in Frontiers in Pharmacology (2019)

Authors:
Dondapati S.K., Lübberding H., Zemella A., Thoring L., Wüstenhagen D.A., Kubick S.

 

2019 - Activity of the Gramicidin A Ion Channel in a Lipid Membrane with Switchable Physical Properties

Icon_Orbit.png   Orbit 16 publication in Langmuir (2019)

Authors:
Reiter R., Zaitseva E., Baaken G., Halimeh I., Behrends J.C., Zumbuehl A

 

2019 - A comparison of ion channel current blockades caused by individual poly(ethylene glycol) molecules and polyoxometalate nanoclusters

Icon_Orbit.png   Orbit 16 publication in The European Physical Journal E (2019)

Authors:
Wang H., Kasianowicz J.J., Robertson J.W.F., Poster D.L., Ettedgui J.

 

2018 - The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S

Icon_Orbit.png   Orbit 16 publication in American Society for Microbiology (2018)

Authors:
Wenzel M., Rautenbach M., Vosloo J.A., Siersma T., Aisenbrey C.H.M., Zaitseva E., Laubscher W.E., van Rensburg W., Behrends J.C., Bechinger B., Hamoen L.W.

 

2018 - Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores

Icon_Orbit.png   Orbit 16 publication in The European Physical Journal E (2018)

Authors:
Talarimoghari M., Baaken G., Hanselmann R., Behrends J.C.

 

2018 - Getting drugs into Gram-negative bacteria: Rational rules for permeation through general porins

Icon_Orbit.png   Orbit 16 publication in ACS Infectious Diseases (2018)

Authors:
Acosta-Gutierrez S., Ferrara L., Pathania M., Masi M., Wang J., Bodrenko I., Zahn M., Winterhalter M., Stavenger R.A., Pages J.-M., Naismith J.H., van den Berg B., Page M., Ceccarelli M.

 

2018 - Defined Bilayer Interactions of DNA Nanopores Revealed with a Nuclease-Based Nanoprobe Strategy

Icon_Orbit.png   Orbit 16 publication in ACS Nano (2018)

Authors:
Burns J.R., Howorka S.

 

2018 - Cell‐free production of pore forming toxins: Functional analysis of thermostable direct hemolysin from Vibrio parahaemolyticus

Icon_Orbit.png   Orbit 16 publication in Engineering in Life Sciences (2018)

Authors:
Dondapati S.K., Wüstenhagen D.A., Strauch E., Kubick S.

 

2017 - Validation of ADAM10 metalloprotease as a Bacillus thuringiensis Cry3Aa toxin functional receptor in Colorado potato beetle (Leptinotarsa decemlineata)

Icon_Orbit.png  Orbit 16 publication in Insect Molecular Biology (2017)

Authors: 
Ruiz-Arroyo V.M., García-Robles I., Ochoa-Campuzano C., Goig G.A., Zaitseva E., Baaken G., Martínez-Ramírez A.C., Rausell C., Real M.D.

 

2017 - Stability and dynamics of membrane-spanning DNA nanopores

Icon_Orbit.png   Orbit 16 publication in Nature Communications (2017)

Authors:
Maingi V., Burns J.R., Uusitalo J.J., Howorka S., Marrink S.J., Sansom M.S.P.

 

2017 - High-yield production of “difficult-to-express” proteins in a continuous exchange cell-free system based on CHO cell lysates

Icon_Orbit.png   Orbit 16 publication in Scientific Reports (2017)

Authors:
Thoring L., Dondapati S.K., Stech M., Wüstenhagen D.A., Kubick S.

 

2016 - Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis

Icon_Orbit.png  Orbit 16 publication in Nanoscale (2016)

Authors:
Boukhet M., Piguet F., Ouldali H., Pastoriza-Gallego M., Pelta J., Oukhaled A.

 

2016 - Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR

Icon_Orbit.png  Orbit 16 publication in Biophysical Journal (2016)

Authors: 
Salnikov E.S., Raya J., De Zotti M., Zaitseva E., Peggion C., Ballano G., Toniolo C., Raap J., Bechinger B.

 

2016 - A biomimetic DNA-made channel for the ligand-controlled and selective transport of small-molecule cargo through a biological membrane

Icon_Orbit.png  Orbit 16 publication in Nature Nanotechnology (2016)

Authors: 
Burns J.R., Seifert A., Fertig N, Howorka S.

 

2015 - High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore

Icon_Orbit.png  Orbit 16 and   icon-vpp.png   Vesicle Prep Pro publication in American Chemical Society Nano (2015)

Authors: 
Baaken G., Halimeh I., Bacri, Pelta J., Oukhaled A., Behrends J.C.

 

2015 - Bilayer-Spanning DNA Nanopores with Voltage- Switching between Open and Closed State

Icon_Orbit.png  Orbit 16 and   icon-vpp.png   Vesicle Prep Pro publication in American Chemical Society Nano (2015)

Authors: 
Seifert A., Göpfrich K., Burns J.R., Fertig N., Keyser U.F., Howorka S.

 

2015 - Automated Formation of Lipid Membrane Microarrays for Ionic Single-Molecule Sensing with Protein Nanopores

Icon_Orbit.png  Orbit 16 publication in Small (2015)

Authors: 
Del Rio Martinez J.M., Zaitseva E., Petersen S., Baaken G., Behrends J.C.

 

2015 - Antibiotic translocation through porins studied in planar lipid bilayers using parallel platforms

Icon_Orbit.png  Orbit 16,   icon-pap.png   Port-a-Patch and   icon-vpp.png   Vesicle Prep Pro publication in Analyst (2015)

Authors:
Weichbrodt C., Bajaj H., Baaken G., Wang J., Guinot S., Kreir M, Behrends J.C., Winterhalter M., Fertig N.

 

2014 - Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG

Icon_Orbit.png  Orbit 16 publication in Nature (2014)

Authors:
Goyal P., Krasteva P.V., Van GervenN., GubelliniF., Van den BroeckI., Troupiotis-TsaïlakiA., Jonckheere W., Péhau-ArnaudetG., Pinkner J.S., ChapmanM.R., Hultgren S.J., Howorka S., FronzesR., Remaut H.

 

2014 - Generation of chip based microelectrochemical cell arrays for long-term and high-resolution recording of ionic currents through ion channel proteins

Icon_Orbit.png  Orbit 16 publication in Sensors and Actuators B: Chemical (2014)

Authors:
Zheng T., Baaken G., Vellinger M., Behrends J.C., Rühe J.

 

2013 - Self-Assembled DNA Nanopores That Span Lipid Bilayers

Icon_Orbit.png   Orbit 16 publication in Nano Letters (2013)

Authors: 
Burns J.R., Stulz E., Howorka S.

 

2012 - Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures

Icon_Orbit.png   Orbit 16 publication in Science (2012)

Authors: 
Langecker M., ArnautV., Martin T.G., ListJ., RennerS., Mayer M., Dietz H., Simmel F.C.

 

2011 - Nanopore-based single-molecule mass spectrometry on a lipid membrane microarray

Icon_Orbit.png   Orbit 16 publication in Journal of the American Chemical Society Nano (2011)

Authors: 
Baaken G., Ankri N., Schuler A.K., Rühe J., Behrends C.

 

2008 - Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents

Icon_Orbit.png  Orbit 16 publication in Lab on a Chip (2008)

Authors:
Baaken G., Sondermann M., Schlemmer C., Rühe J., Behrends J.C.


このページの商品のお問合せ

Please wait...